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Summary

 

• Lichenized fungi of the genus 

 

Lepraria

 

 lack ascomata and conidiomata, and sym-
bionts codisperse by soredia. Here, it is determined whether algal symbionts associ-
ated with 

 

Lepraria

 

 are monophyletic, and whether fungal and algal phylogenies are
congruent, both of which are indicative of a long-term, continuous association
between symbionts.
• The internal transcribed spacer (ITS) and part of the actin type I locus were
sequenced from algae associated with 

 

Lepraria

 

, and the fungal ITS and mitochondrial
small subunit (mtSSU) were sequenced from fungal symbionts. Phylogenetic analyses
tested for monophyly of algal symbionts and congruence between algal and fungal
phylogenies.
• Algae associated with 

 

Lepraria

 

 were not monophyletic, and identical algae
associated with different 

 

Lepraria

 

 individuals and species. Algal and fungal
phylogenies were not congruent, suggesting a lack of strict codiversification.
• This study suggests that associations between symbionts are not strictly
maintained over evolutionary time. The ability to switch partners may provide
benefits similar to genetic recombination, which may have helped this lineage
persist.
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Introduction

 

The mode in which symbionts are transmitted is considered
one of the most important steps towards coevolution
(Maynard-Smith, 1991). Vertical transmission maintains
associations between symbionts over generations through
codispersal, while horizontal transmission forces offspring to
acquire new symbionts, thereby permitting opportunities for
symbiont exchange. Co-diversification is well known among
vertically transmitted bacterial-animal symbioses (Peek 

 

et al

 

.,
1998; Clark 

 

et al

 

., 2000; Funk 

 

et al

 

., 2000; Lo 

 

et al

 

., 2003;

Degnan 

 

et al

 

., 2004) and vertically transmitted fungal-animal
symbioses (Chapela 

 

et al

 

., 1994; Hinkle 

 

et al

 

., 1994). Strict
vertical transmission is expected to stabilize relationships
between lineages, linking them over evolutionary time.
Maintenance of fixed associations, with subsequent evolution,
should lead to the formation of monophyletic groups,
which associate solely with the symbiont and its relatives. In
contrast, the breakdown and loosening of relationships may
lead to the symbionts and their relatives associating with
nonmonophyletic assemblages. Furthermore, the continued
association between symbiont lineages, with subsequent
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evolution, might be predicted to lead to parallel cladogenesis
(concordant evolutionary histories) between symbiont lineages
(Futuyma, 1998).

Lichen symbioses are believed to be coevolved (Ahmadjian,
1987). However, recent studies have revealed only low amounts
of codiversification between fungal and green algal lichen
symbionts (Kroken & Taylor, 2000; Dahlkild 

 

et al

 

., 2001;
Piercey-Normore & DePriest, 2001; Zoller & Lutzoni,
2003). Furthermore, many fungal taxa associate with eukary-
otic photobionts which are not monophyletic, and are shared
with other lichen-forming fungi, demonstrating that tight,
exclusive relationships between symbionts are not maintained
over time (Kroken & Taylor, 2000; Dahlkild 

 

et al

 

., 2001;
Helms 

 

et al

 

., 2001; Piercey-Normore & DePriest, 2001;
Romeike 

 

et al

 

., 2002; Opanowicz & Grube, 2004; Piercey-
Normore, 2004; Yahr 

 

et al

 

., 2004; Cordeiro 

 

et al

 

., 2005;
Blaha 

 

et al

 

., 2006; Guzow-Krzeminska, 2006; Ohmura 

 

et al

 

.,
2006; Piercey-Normore, 2006; Yahr 

 

et al

 

., 2006; Hauck 

 

et al

 

.,
2007). With the exception of the vegetatively reproducing

 

Cladonia perforata

 

 (Yahr 

 

et al

 

., 2004), which was found to
associate with a narrow range of algae that were shared among
other species, all studies have investigated species and genera
in which the fungus regularly or occasionally reproduces with
meiotically or mitotically derived fungal propagules, which
disperse the fungus independently of the photobiont. When
this occurs, the relationship between the fungal and algal
partners is decoupled. Upon germination, fungal spores must
somehow obtain a suitable photobiont, which may be free-
living (Etges & Ott, 2001; Sanders & Lücking, 2002; Sanders,
2005; Hedenås 

 

et al

 

., 2007), or obtained through the theft
from, or parasitism of, another lichen (Friedl, 1987; Ott,
1987a,b; Stenroos, 1990; Rambold & Triebel, 1992; Ott

 

et al

 

., 1995; Gaßmann & Ott, 2000; Lücking & Grube,
2002). Both these strategies have been used to explain the re-
lichenization of lichen-forming fungal species lacking a shared
mode of dispersal (Beck 

 

et al

 

., 1998, 2002).
Dispersal by means of soredia or thallus fragmentation may

circumvent symbiont decoupling, by carrying both symbionts
together and maintaining links between lineages over genera-
tions. A small number of lichenized genera disperse solely
by thallus fragmentation or the production of soredia. The
fungal genus 

 

Lepraria

 

 (

 

c.

 

 40 spp.) has never been found to
produce meiotically derived ascospores or mitotically derived
conidia. 

 

Lepraria

 

 is vegetatively reproducing, and symbionts
are presumed to be vertically transmitted by means of soredia
(propagules containing fungal and algal cells) or thallus
fragmentation. This lineage provides an optimal system to
examine whether relationships between symbionts remain intact
over evolutionary time in the absence of fungal haplospore
production, and the obligate reassociation step between
generations. Here we assess the effectiveness of vertical trans-
mission of fungal–algal associations in the genus 

 

Lepraria

 

 over
evolutionary time by testing the hypotheses that algal symbionts
of the lichenized fungal genus 

 

Lepraria

 

 form a monophyletic

group, and that fungal and algal phylogenies are congruent,
both of which suggest a tight, long-term perpetuation of the
symbiosis between fungal and algal lineages. We then compare
the patterns seen in this study with those from other codispersed
symbioses.

 

Materials and Methods

 

Taxon selection

 

Thirty-four 

 

Lepraria

 

 collections from a wide geographic and
phylogenetic range were analyzed, along with additional non

 

Lepraria

 

 collections (Supplementary material, Table S1).

 

Lepraria

 

 has been shown to be polyphyletic (Ekman &
Tønsberg, 2002), and we did not include 

 

Lepraria

 

 species
found outside of the core group of 

 

Lepraria

 

 (

 

Lepraria

 

 s. str.).
Two other genera, 

 

Siphula

 

 and 

 

Leprocaulon

 

, would have been
ideal for this study based on their reproductive mode and
species number. However, 

 

Siphula

 

 has also been shown to be
polyphyletic (Platt & Spatafora, 2000; Stenroos 

 

et al

 

., 2002;
Grube & Kantvilas, 2006), and the monophyly of 

 

Leprocaulon

 

has yet to be confirmed. Specimens have been deposited in
the Wisconsin State Herbarium (WIS) or were obtained from
the Botanisches Museum & Botanischer Garten Berlin-
Dahlem (B). The 110 new sequences generated in this study
were supplemented with 

 

Asterochloris

 

 algal sequences from
GenBank. All samples and sequences used in this study, with
GenBank accession numbers, are shown in Table S1.

 

Molecular methods

 

DNA was extracted from lichen thalli, using the method of Grube

 

et al

 

. (1995) or the Qiagen DNeasy Mini Extraction Kit (Qiagen,
Valencia, CA, USA), following the modifications of Crespo

 

et al

 

. (2001). An area of approx. 0.5 cm 

 

×

 

 0.5 cm was used for
DNA extraction from the 

 

Lepraria

 

 thalli, while a 0.5–1.0 cm-
long portion of 

 

Stereocaulon

 

 thalli was used for DNA extraction.
The algal rDNA internal transcribed spacer (ITS) and a
portion of the actin type I locus (one exon and two partial
introns) were PCR-amplified as in Nelsen & Gargas (2006)
using the primers a-nu-ssu-1752-5

 

′

 

 (Nelsen & Gargas, 2006)
and ITS4T (Kroken & Taylor, 2000) for the ITS, and a-nu-
act1-0645-5

 

′

 

- and a-nu-act1-0818-3

 

′

 

-19 (Nelsen & Gargas,
2006) for the actin type 1 locus. Kroken & Taylor (2001)
initially recovered two actin genes (type I and type II) from

 

Trebouxia

 

, and subsequently designed type I specific primers.
In the present study, we used primers designed to preferentially
amplify the actin type I locus (instead of the actin type II
locus). While 

 

Asterochloris

 

 most likely has actin type II, we did
not attempt to amplify it, and 

 

BLAST

 

 searches (Altschul 

 

et al

 

.,
1997) of amplified fragments confirmed that we were indeed
amplifying the actin type I locus (and not actin type II).
Additionally, the fungal ITS was PCR amplified using the
primers ITS1F (Gardes & Bruns, 1993) and ITS4A (DL
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Taylor in Kroken & Taylor, 2001), while a portion of the
fungal mitochondrial small subunit (mtSSU) was PCR-
amplified using the mrSSU1 (Zoller 

 

et al

 

., 1999) and MSU7
(Zhou & Stanosz, 2001) primers.

The PCR reactions (total volume 12.55–13.05 µl) followed
that of Nelsen & Gargas (2006), and contained 1.3–1.8 µl of
diluted DNA (DNA was diluted 1 : 10 or 5 : 100 as listed in
Grube 

 

et al

 

. (1995) and Crespo 

 

et al

 

. (2001), respectively),
0.38–0.39 µ

 

M

 

 of each primer, 4 µl water and 6.25 µl of Red
Mix Plus (Gene Choice, Inc., Frederick, MD, USA), which
consisted of 150 m

 

M

 

 Tris-HCl, 40 m

 

M

 

 (NH

 

4

 

)

 

2

 

SO

 

4

 

, 3 m

 

M

 

MgCl

 

2

 

, 0.2% Tween 20, 0.4 m

 

M

 

 dNTPs and 0.05 units 4 µl

 

–1

 

Taq

 

 DNA polymerase. Because DNA was not quantified, we
have chosen to include the volume of diluted DNA used in
the PCR reactions rather than the mass.

The PCR and cycle-sequencing reactions were performed
in a Stratagene Robocycler (La Jolla, CA, USA), Techne
Flexigene thermal cycler (Burlington, NJ, USA) or MJ
Research PTC 200 thermal cycler (Waltham, MA, USA).
The PCR amplification of the algal ITS began with an initial
denaturation of 95

 

°

 

C for 5–7 min, and was followed by 10
cycles of 95

 

°

 

C for 1 min, 62

 

°

 

C for 1 min and 72

 

°

 

C for
1 min, and then 25–35 cycles of 95

 

°

 

C for 1 min, 53–56

 

°

 

C
for 1 min and 72

 

°

 

C for 1 min, with a final extension at 72

 

°

 

C
for 7 min. Identical conditions were used for the amplifica-
tion of the actin locus, except that an annealing temperature
of 60

 

°

 

C was used for the last 25–35 cycles. The PCR ampli-
fication of the fungal ITS followed Nelsen 

 

et al

 

. (2007), and
began with an initial denaturation of 95

 

°

 

C for 5 min, fol-
lowed by 10 cycles of 95

 

°

 

C for 1 min, 62

 

°

 

C for 1 min and
72

 

°

 

C for 1 min. This was followed by 35 cycles of 95

 

°

 

C for
1 min, 53

 

°

 

C for 1 min and 72

 

°C for 1 min and terminated
with a final extension of 72°C for 7 min. The PCR conditions
for the mtSSU began with an initial denaturation of 95°C for
5–7 min, followed by 35 cycles of 95°C for 1 min, 56°C for
1 min and 62°C for 1 min and a final extension of 72°C
for 7 min. The PCR products were then run in a 1% agarose
gel, which was stained with ethidium bromide and visualized
under UV light.

The PCR samples were cleaned with ExoSAP-IT (USB,
Cleveland, OH, USA) following the manufacturer’s protocols,
and samples were sequenced as in Nelsen & Gargas (2006).
Algal actin and fungal mtSSU samples were sequenced with
the PCR primers, and algal and fungal ITS samples were
sequenced with the ITS1 and ITS4 primers (White et al.,
1990). Cycle sequencing cocktails contained 1 µl PCR product,
0.33 µl 1 µM primer, 1 µl Big Dye Version 3.1 (Applied Bio-
systems, Foster City, CA, USA), 2–2.5 µl Big Dye Buffer and
7.18 µl water, and were run for 20–25 cycles at 96°C for 30 s,
46°C for 20 s and 60°C for 4 min (this protocol follows the
manufacturer’s instructions). Samples were cleaned with
Sephadex G-50 fine (Amersham Biosciences, Uppsala,
Sweden) in Centri-Sep columns (Princeton Separations, Inc.,
Adelphia, NJ, USA), using the protocol described on the

University of Wisconsin Biotechnology Center’s website (https://
dna.biotech.wisc.edu/documents/Non-bead_cleanups.htm), or
with magDTR dye terminator removal resin (Edge Biosys-
tems, Galthersburg, MD, USA), following the manufacturer’s
instructions. Samples were sequenced at the University of
Wisconsin Biotechnology Center (Madison, WI, USA).
Chromatograms were read and sequences assembled in
Sequencher 3.0 (Gene Codes Corporation, Ann Arbor, MI,
USA).

Phylogenetic analyses – general

Sequences from Table S1 were manually aligned using Se-Al
vs 2.0a11 (Rambaut, 1996), and two ambiguous regions in
the second intron of the algal actin locus were excluded
(21 bp: positions 392–412 relative to the actin sequence from
the algal symbiont of L. lobificans 154 (DQ229898); 56 bp:
positions 581–634 relative to the actin sequence from the
algal symbiont of L. lobificans 154 (DQ229898)), while one
region in the fungal ITS1 was excluded (45 bp: positions
101–147 relative to the fungal ITS sequence from S.
tomentosum (EU008634)). The sequenced actin fragments
contained two partial introns (maximum length of first intron
= 212 bp; maximum length of second intron = 311 bp), and
one exon (125 bp). The sequenced fragments varied in length,
which was mostly the result of poor sequence quality at the 3′
and 5′ ends. Algal sequences were collapsed into 33 unique
sequences using TCS v1.18 (Clement et al., 2000).

Phylogenetic analyses – data and topological 
congruence

To determine if data partitions (algal ITS and actin; fungal
ITS and mtSSU) were congruent, the 33 sequence algal
dataset was reduced to include only algae with corresponding
ITS and actin sequences, resulting in an alignment of 19
algae. Similarly, the 25 individual Lepraria fungal dataset was
reduced to include 20 individuals with corresponding ITS
and mtSSU sequences. The incongruence length difference
(ILD) test (Farris et al., 1994), which tests the null hypothesis
of data congruence, was performed on the algal and fungal
datasets in PAUP* 4.0b10 (Swofford, 2002), using a heuristic
search of 1000 replicates with tree-bisection-reconnection
(TBR) branch swapping and random taxon addition with
100 random addition replicates. In the ITS and mtSSU ILD
test, a limit was imposed in which no more than 100 trees per
replicate greater than length 1 were held at each step.

To determine if topologies between data partitions were
congruent, heuristic searches were performed for the algal ITS
and actin data partitions (using the 19 alga dataset), as well as
the fungal ITS and mtSSU data partitions (using the 20 indi-
vidual dataset) under the maximum parsimony (MP) crite-
rion, using the same settings described for the algal ILD test.
For each data partition, a strict consensus tree was constructed

https://dna.biotech.wisc.edu/documents/Non-bead_cleanups.htm
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from the most-parsimonious trees from each search. The
consensus topology was then enforced as a constraint on the
other data partition from that symbiont group, and a heuristic
search was again performed (using the same settings). Trees
obtained from the unconstrained and constrained searches
were then compared by means of Templeton tests (Templeton,
1983).

Bayesian analyses were conducted on the individual and
combined datasets for each symbiont group in MrBayes 3.0b4
(Huelsenbeck & Ronquist, 2001). The Akaike Information
Criterion (AIC), as implemented in Mr ModelTest 2.2
(Nylander, 2004), was used to select the best-fit substitution
model for the ITS, actin and combined data partitions for the
algal group, and the ITS, mtSSU and combined data parti-
tions for the fungal group. A Bayesian analysis for each parti-
tion was then run for 1 000 000 generations, at a temperature
of 0.08 (algal ITS), 0.15 (algal actin and combined), 0.12
(fungal ITS and combined) or 0.09 (fungal mtSSU), using
four chains and sampling every 100th tree. Initial trees were
discarded for burnin. A majority-rule consensus tree was then
constructed using all sampled postburnin trees in PAUP*
4.0b10 (Swofford, 2002). To test for congruence between parti-
tions, the consensus topology obtained from the combined
dataset for each set of symbionts was searched for in the 95%
credibility interval of trees obtained from individual parti-
tions (Buckley et al., 2002). However, instead of using a 50%
majority-rule consensus topology from the combined analy-
sis, we used a 70% majority-rule consensus tree, to eliminate
clades with very weak support. The presence of this topology
in the credibility intervals was then taken as evidence for no
significant incongruence between partitions (Buckley et al.,
2002).

If criteria for congruence were not met, the ITS datasets
were analyzed individually and with the additional locus
(actin or mtSSU).

Phylogenetic analyses – symbiont monophyly

A MP analysis was conducted on the 33 sequence algal dataset
in PAUP*4.0b10, using the same settings as those described
above, except that a limit was imposed which allowed for no
more than 100 trees greater than length 1 to be saved in each
replicate. Following this, 500 bootstrap replicates (Felsenstein,
1985) were performed using the same settings. A Bayesian
analysis was performed on the same dataset using the methods
described above-however, the analysis was run for 5 000 000
generations instead of 1 000 000, and the temperature was set
to 0.08. Posterior probabilities were then mapped on to the
most likely tree obtained from the Bayesian search.

We tested the hypothesis that sequences obtained from
algal symbionts associated with Lepraria form a monophyletic
group. This was accomplished by enforcing this hypothesis as
a constraint in a MP analysis, and using an identical search to
that described earlier. Unconstrained and constrained trees

were then compared by means of Templeton tests (Temple-
ton, 1983). This hypothesis was also tested in the Bayesian
analysis by searching for this topology in the set of postburnin
trees. The proportion of trees consistent with this hypothesis
was taken as the probability of this hypothesis being correct.

We were careful not to include any Lepraria species shown
to occur outside of Lepraria s. str.; however, we included
species not sequenced in previous studies. Therefore, in the
event that some of these taxa do not belong to Lepraria s. str.,
we excluded (from the 33 sequence dataset) any algae
associated with Lepraria which did not have corresponding
fungal sequences (taxa with fungal sequences have been
shown to belong to Lepraria s. str. (M. P. Nelsen & A. Gargas,
unpublished)). We then used the methods described earlier to
test for the monophyly of algal symbionts associated with
Lepraria (in this reduced dataset).

Actin sequences were missing for many taxa, and although
this is not necessarily problematic (Wiens, 2006), we chose
also to test for symbiont monophyly in the 19 sequence algal
dataset to rule out any possibility of a negative effect from the
incomplete dataset. Tests for monophyly followed those listed
earlier.

Phylogenetic analyses – congruence between symbiont 
data and topologies

Fungal and algal sequences were generated from 25 Lepraria
lichen thalli (Table S1). We determined if fungal and algal
data and topologies were congruent. A single alignment
containing sequence data from both symbionts (all four loci)
was created, and ambiguous regions were deleted (similar to
those described earlier). We then tested for data congruence
using the ILD test as implement in PAUP*4.0b10, using the
same settings described under data partition congruence,
except that a limit was imposed whereby no more than 100
trees greater than length 1 were held at each replicate.

Maximum parsimony analyses were conducted on the
fungal dataset, as well as the algal dataset, in PAUP*4.0b10,
using the criteria described above, with no more than 100 trees
greater than length 1 being held at each replicate. A strict
consensus of MP trees was created for each symbiont group
(fungi and algae). An identical heuristic search was then per-
formed, with the strict consensus topology from the fungi
enforced as a constraint on the algal dataset, and vice-versa.
Trees from the constrained and unconstrained searches were
then compared by means of Templeton tests.

Bayesian analyses were performed on each dataset (fungi
and algae) as described under ‘symbiont monophyly’, with the
temperature set to 0.1 and 0.12 for algal and fungal analyses,
respectively. A 50% majority-rule consensus tree was created
from all postburnin trees obtained from each symbiont. The
hypothesis of topological congruence between fungi and algae
was tested by searching for the consensus topology from the
fungi in the set of postburnin trees for the algal dataset (and
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vice-versa); the proportion of algal trees consistent with the
fungal topology (and vice-versa) was taken as the probability
of this hypothesis being correct.

To visualize fungal–algal associations, we condensed the
algal (actin and ITS) and fungal (ITS and mtSSU) sequences
into unique sequences. The algal symbiont from S. botryosum
was added to the algal alignment and used as the outgroup,
while S. botryosum, S. subcoralloides and S. tomentosum were
added to the fungal alignment and used as the outgroup.
Bayesian analyses were performed on the algal and fungal datasets
as described under ‘symbiont monophyly’ and the temperature
was set to 0.2 and 0.12 for the algal and fungal analyses, respectively.
Trees were then compared to one another, and lines drawn
connecting fungal and algal partners from the ingroup.

Results

Data and topological congruence among algal loci

The combined alignment of 19 algae consisted of 1168
characters, 331 of which were variable and 218 parsimony-
informative. The ITS alignment had a length of 551
characters, of which 52 were variable and 29 parsimony-
informative, while the actin alignment consisted of 617
characters, 279 of which were variable and 189 parsimony-
informative. The MP analyses recovered 40 trees with a length
of 75 steps for the ITS dataset, four trees with a length of 438
steps for the actin dataset, and 23 trees with a length of 517
steps for the combined dataset. Bootstrap analyses recovered
five branches with support greater than or equal to 70 in the
ITS analysis, while eight branches with bootstrap support
greater than or equal to 70 were recovered in the actin and
combined analyses. For the Bayesian analyses, the GTR + I +
G model was recovered as the best-fit model for the ITS
dataset, and the GTR + G model for the actin and combined
datasets. Four branches with posterior probabilities (PP)
greater than or equal to 0.95 were recovered in the ITS
analysis, while nine branches with this degree of support were
found in the actin and combined analyses.

The ILD test revealed no significant incongruence between
algal data partitions (P = 0.547), and the Templeton test
revealed no significant incongruence between algal ITS and
actin topologies (ITS data with actin topology: P = 0.2568;
actin data with ITS topology: P = 0.2393). Finally, the topo-
logy produced by the combined dataset in the Bayesian anal-
ysis was found in the 95% credible set of trees from the ITS
and actin analyses, suggesting an absence of significant incon-
gruence. Consequently, datasets were combined for analyses
used to test the hypothesis of symbiont monophyly.

Data and topological congruence among fungal loci

The combined alignment of 20 fungal individuals consisted
of 1358 characters, 166 of which were variable and 90

parsimony-informative. The ITS alignment had a length of
487 characters, of which 134 were variable and 75 parsimony-
informative, while the mtSSU alignment consisted of 871
characters, 32 of which were variable and 15 parsimony-
informative. The MP analyses recovered seven trees with
a length of 181 steps for the ITS dataset, 1818 trees with a
length of 35 steps for the mtSSU dataset, and 10 trees with a
length of 216 steps for the combined dataset. For the Bayesian
analyses, the GTR + G model was recovered as the best-fit
model for the ITS dataset, the HKY + I model for the mtSSU,
and the GTR + I + G model for the combined dataset.

The ILD test revealed no significant incongruence between
fungal data partitions (P = 1.000), and the Templeton test
revealed no significant incongruence between fungal ITS and
mtSSU topologies (constrained and unconstrained topologies
were of equal lengths for both data partitions). Finally, the
topology produced by the combined dataset in the Bayesian
analysis was found in the 95% credible set of trees from the
ITS, but not from the mtSSU. The 50% majority-rule con-
sensus trees from the ITS and combined datasets did not
appear to be in conflict with that from the mtSSU, but the
mtSSU tree had lower phylogenetic resolution, which may be
the reason the exact topology obtained from the combined
dataset was not found in the 95% credible set of trees from the
mtSSU. This may be related to the small amount of phyloge-
netic information found in the mtSSU at this phylogenetic
scale, relative to the ITS. We decided to combine the two loci,
since the topologies were not in conflict in the Bayesian analy-
sis and the Templeton tests failed to reject incongruence.
However, in the event that the incongruence detected in the
Bayesian analysis was significant, we also analyzed the fungal
ITS dataset separately when comparing the fungal and algal
topologies.

Algal symbiont monophyly

The alignment of 33 algae had a length of 1175 characters
(ITS, 558; actin, 617), with 354 variable characters (ITS, 75;
actin, 279), 224 of which were parsimony-informative (ITS,
35; actin, 189). The unconstrained MP analysis recovered
3027 trees with a length of 553 steps, while the constrained
search recovered 9100 trees with a length of 605 steps. In the
Bayesian analysis, the GTR + I + G model was found to be
the best-fit for this dataset. Topologies produced from the MP
and Bayesian analyses were largely congruent, with the
exception of poorly supported branches.

All Lepraria individuals were found to associate with Aste-
rochloris species as their photobiont. Several well-supported
clades were recovered (Fig. 1), and despite poor support
towards the base of the tree, photobionts associated with Lep-
raria were clearly not monophyletic. Lepraria photobionts
were found in several clades, and a topology consistent with
symbiont monophyly was rejected in both parsimony (Tem-
pleton test, P ≤ 0.0001) and Bayesian (P = 0.00) analyses.
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When Lepraria symbionts without corresponding fungal
sequences were excluded from the 33 alga dataset (results not
shown), monophyly was again rejected in both the parsimony
(Templeton test, P ≤ 0.0001) and Bayesian (P = 0.00) analyses.
The constrained MP analysis of the 19 alga dataset recovered
69 trees with a length of 561 steps (results of unconstrained
search are listed above), and symbiont monophyly was also
rejected in both the parsimony (Templeton test, P ≤ 0.0001)
and Bayesian (P = 0.00) analyses.

No Lepraria algal symbionts were found to occur in clade I
(sensu Piercey-Normore & DePriest, 2001) of the most likely
tree produced by the Bayesian analysis of the 33 algal dataset
(Fig. 1). Instead, algal symbionts associated with Lepraria
appeared to be restricted to the weakly supported clade II
(sensu Piercey-Normore & DePriest, 2001). A number of

Lepraria species associate with photobionts in a very strongly
supported clade (clade IIL), which appears to occur nearly
exclusively with Lepraria, with the exception of a single
symbiont from Cladonia caespiticia. This clade consists of
algal symbionts isolated from several species from a broad
geographic range (eastern North America, Europe and
China). All Lepraria individuals from eastern North America
were found to associate with algae from this clade. Identical
algal ITS and actin sequences (actin sequences were approxi-
mately five times as variable as the ITS sequences) were
obtained from eastern North America and China. Additionally,
two algae in this clade (from Lepraria lobificans (153 and L12))
in Fig. 1 were of special interest as they were recovered from a
diverse range of Lepraria species (Fig. 1) and even C. caespiticia.
Lepraria individuals from Costa Rica (Lepraria nigrocincta

Fig. 1 The most-likely tree derived by Bayesian analysis of internal transcribed spacer (ITS) and actin sequences from Asterochloris algae. 
Branches with posterior probabilities ≥ 0.95 and maximum-parsimony bootstrap support of 70% or greater are in bold. The tree was rooted 
with an algal symbiont from Cladonia cristatella (Trebouxia erici), and algal sequences derived from Lepraria individuals are highlighted in bold 
face. Symbols following DNA number (listed in Supplementary material, Table S1) or species name denote the geographical origin of the 
specimen (see insert). Two algal sequences (from Lepraria lobificans (153) and from L. lobificans (L12)) were found in algae which associated 
with several fungal individuals and species; the additional fungal individuals and taxa which associated with these algae are shown in gray boxes 
to the right of the sequence used in the analysis. Clades I and II sensu Piercey-Normore & DePriest (2001) are shown.
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(L55), Lepraria sp. 1 (L54) and Lepraria sp. 4 (L18)) associ-
ated with algae across clade II, with algal symbionts from
Lepraria sp. 4 (L18) and L. nigrocincta (L55) forming a mono-
phyletic group. Lepraria individuals from China (Lepraria
atrotomentosa (L65), L. lobificans (L63), Lepraria sp. 6 (129),
Lepraria sp. 7 (L60) and Lepraria sp. 8 (L59)) associated with
algae found mostly in clade IIL, with one individual (Lepraria
sp. 7 (L60)) occurring with an alga sister to a symbiont from
Stereocaulon dactylophyllum (Trebouxia excentrica).

Topological congruence between fungal and 
algal phylogenies

Because of potential incongruence between the fungal ITS
and mtSSU data partitions, algal/fungal congruence analyses
were performed on both the combined fungal datasets, as well
as the ITS alone. The fungal alignment (which contained
individuals which had fungal ITS or fungal ITS and mtSSU
sequences) consisted of 1366 characters (ITS, 487; mtSSU,
871), with 187 variable sites (ITS, 119; mtSSU, 30), 107 of
which were parsimony-informative (ITS, 70; mtSSU, 15),
while the algal alignment (which contained only individuals
for which fungal sequences were obtained) consisted of 1157
characters (ITS, 548; actin, 609), with 174 variable sites (ITS,
26; actin, 148), 67 of which were parsimony-informative
(ITS, 15; actin, 52).

The unconstrained MP analyses recovered 10 000 MP
trees with a length of 208 steps for the algal dataset. The
fungal ITS dataset resulted in 97 MP trees with a length of
250 steps, and the combined fungal dataset produced 86 trees
with a length of 285 steps. When analyses were constrained,
3500 trees with a length of 303 steps were recovered for
the algal dataset with the strict consensus from the combined
fungal dataset imposed as a constraint, and 5700 trees with a
length of 266 steps were obtained when constrained with the
strict consensus from the fungal ITS dataset. When the fungal
datasets were constrained with the strict consensus topology
from the algae, 36 trees with a length of 333 steps were
recovered for the combined fungal data and 48 trees with a
length of 292 steps were produced by the fungal ITS dataset.

In the Bayesian analyses, the HKY + I model was selected
as the best-fit for the algal dataset, while the GTR + I + G and
GTR + G models were selected as the best fit for the combined
and ITS fungal datasets, respectively. Majority-rule consensus
topologies from Bayesian analyses were largely congruent
with those from MP analyses. Consensus topologies from the
combined and ITS datasets were identical, although posterior
probabilities varied. Topological congruence between symbionts
was rejected in MP analyses by means of Templeton tests for
both the algal dataset with the combined and ITS fungal
topologies (P ≤ 0.0001), and the combined and ITS fungal
datasets with the algal topology (P ≤ 0.0001). Topological
congruence was also rejected in the Bayesian analyses
(P = 0.00 for all combinations).

When outgroups were included, the fungal alignment con-
sisted of 25 sequences, with a length of 1394 sites (254 vari-
able, 171 parsimony-informative), while the algal alignment
consisted of 10 sequences, with a length of 1169 sites (251
variable, 79 parsimony-informative). The GTR + I + G and
GTR + G models were found to be the best fit for the fungal
and algal datasets, respectively. Figure 2 illustrates the most
likely trees obtained from the Bayesian analyses of the
combined algal and combined fungal datasets, with lines
connecting fungal and algal symbionts.

Discussion

Asterochloris algae

Lepraria individuals associated with Asterochloris algae,
consistent with Hildreth & Ahmadjian (1981) and Nelsen &
Gargas (2006). Several Trebouxia species (T. erici, T. excentrica,
T. glomerata, T. irregularis, T. italiana, T. magna and T.
pyriformis) will be transferred to Asterochloris (Rambold et al.,
1998), but these taxonomic changes have not yet been
formally made. These species differ from Trebouxia s. str. in
several morphological characteristics (summarized in Helms,
2003), and molecular data confirms their separation (Friedl &
Zeltner, 1994; Friedl & Rokitta, 1997; Piercey-Normore &
DePriest, 2001). We include the Trebouxia species listed above
in our definition of Asterochloris. Asterochloris frequently
associates with Cladoniaceae and Stereocaulaceae (Rambold
et al., 1998; Persoh et al., 2004; Miadlikowska et al., 2006),
but also with taxa outside these families (Anzina (Tschermak-
Woess, 1980; Piercey-Normore & DePriest, 2001);
Diploschistes (Friedl, 1987) and Porpidiaceae (Rambold et al.,
1998)). Lepraria individuals from eastern North America
associated with algae from clade IIL (Fig. 1), and more
Lepraria individuals and species from eastern North America
should be examined to verify this trend. Figures 1 and 2
illustrate that algae with identical sequences (L12 and 153)
occurred with several Lepraria species and another family (C.
caespiticia, Cladoniaceae), which may be the result of distantly
related fungi providing similar microhabitats for the same
algae (Beck et al., 2002).

Lack of pairwise codiversification

Codiversification is known from a number of vertically
transmitted symbioses: ants, and the fungi they raise and farm
(Chapela et al., 1994; Hinkle et al., 1994), endosymbiotic
bacteria in clams (Peek et al., 1998), and intracellular,
endosymbiotic bacteria in cockroaches, termites and aphids
(Clark et al., 2000; Funk et al., 2000; Lo et al., 2003).
However, Herre et al. (1999) discuss how the mode in which
symbionts are transmitted (horizontal vs vertical) in ecological
time does not necessarily translate to an evolutionary trend.
Certain vertically and horizontally transmitted fungal endophytes



© The Authors (2007). Journal compilation © New Phytologist (2007) www.newphytologist.org New Phytologist (2008) 177: 264–275

Research 271

show evidence of codiversification (Schardl et al., 1997),
while other vertically transmitted fungal endophytes do not
(Clay & Schardl, 2002). Additionally, in the fig-fig wasp
symbiosis (which is horizontally transmitted in ecological
time), mutualistic pollinating fig wasps have cospeciated with
their fig hosts, while parasitic, nonpollinating fig wasps have
not (Weiblen & Bush, 2002). A comparison of phylogenies
from the maternally inherited, endosymbiotic, intracellular
bacterial genus Wolbachia and its aphid hosts suggests that
while symbionts are mostly transmitted vertically in ecological
time, there is occasional switching (Werren & O’Neil, 1997;
Herre et al., 1999), with phylogenies between symbionts
becoming less congruent as switching increases. The Lepraria-
Asterochloris symbiosis appears somewhat similar to the
Wolbachia-aphid symbiosis in that, while symbionts are
generally presumed to be transmitted vertically in ecological
time, they occasionally switch. Phylogenies of Lepraria fungi
and Asterochloris algae do not show strong evidence of
codiversification (Fig. 2), which is in agreement with previous
studies of fungal-green algal lichens (Kroken & Taylor, 2000;
Dahlkild et al., 2001; Piercey-Normore & DePriest, 2001;
Zoller & Lutzoni, 2003) and fungal-cyanobacterial lichens
(Wirtz et al., 2003; O’Brien et al., 2005; Stenroos et al., 2006;
Myllys et al., 2007) that produce independent spores.

Dissociation and symbiont-switching

Symbiont-switching could occur at several stages in the life cycle.
Upon germination, soredia can fuse to form a single thallus (Jahns,
1972; Schuster et al., 1985; Honegger, 1992), suggesting that
the thallus may be composed of more than one fungal or algal
individual. Hyphae from one fungus could potentially attach
and penetrate algal cells it is not currently attached to. Lepraria
species are known to grow intermixed, increasing the
possibility of symbiont switching. Molecular studies of
other lichen taxa have recovered multiple fungal (Murtaugh
et al., 2000; Robertson & Piercey-Normore, 2007) and algal
(Bhattacharya et al., 1996; Helms et al., 2001; Romeike et al.,
2002; Guzow-Krzeminska, 2006; Piercey-Normore, 2006)
genotypes or sequences from a single thallus; however, genetic
heterogeneity within a thallus is not necessarily evidence
for multiple individuals (Simon et al., 2005; Robertson
& Piercey-Normore, 2007). Additionally, some lichens are
known to switch algae as they mature (Friedl, 1987), and the
ability to harbour two distinct lichen photobionts has been
discussed as an adaptation to changing environmental conditions
such as shifts in light regimes (Piercey-Normore, 2006). We
did not find multiple algae or fungi in a thallus, but feel it
could potentially occur, and recommend that this be investigated

Fig. 2 A comparison between fungal–algal associations. The most-likely trees derived by Bayesian analysis of Lepraria fungal internal transcribed 
spacer (ITS) and mitochondrial small subunit (mtSSU) sequences and Asterochloris algal ITS and actin sequences are shown, with lines 
connecting fungal–algal associations. Branches with posterior probabilities ≥ 0.95 are in bold. The Lepraria tree is rooted with Stereocaulon 
botryosum, S. subcoralloides and S. tomentosum, and the Asterochloris tree with the algal symbiont from S. botryosum.
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further in Lepraria. Intrahost algal heterogeneity is known
among corals (Rowan & Knowlton, 1995; Little et al., 2004),
which associate with a wide range of algae during the juvenile
stage, and later switch the dominant algal genotype (Little
et al., 2004).

Switching may also occur through the independent dispersal
and re-lichenization of a symbiont, which initiates a new
association between lineages. Lepraria does not produce
specialized single-symbiont spores (such as ascospores or
conidia), but Lepraria species produce a thick medullary layer
composed solely of hyphae. If a portion of the medullary layer
were able to disperse and acquire algae, it would provide
another means by which switching could occur. Additionally,
some Lepraria taxa have long fungal hyphae projecting from
soredia, which could, perhaps, acquire new photobionts.
These ideas, however, require further investigation. Independent
dispersal may also occur as a result of symbiont mortality.
Photobiont mortality presumably forces the mycobiont to re-
lichenize or ultimately perish. Mycobionts have been found to
survive for at least 1 yr in an unlichenized state (Etges & Ott,
2001), but it is generally believed they must re-lichenize in a
short period of time, or associate with or parasitize incompatible
algae until they meet their preferred partner (Honegger,
1992). In contrast, mycobiont mortality may not necessarily
lead to the correlated death of its photobiont, as the occurrence
of eukaryotic photobionts in the unlichenized state is well
documented (Tschermak-Woess, 1978; Mukhtar et al., 1994;
Sanders & Lücking, 2002; Sanders, 2005; Hedenås et al.,
2007).

Advantages of dissociation and symbiont-switching

Codispersal has advantages, such as avoiding the perilous
symbiont reassociation step in the life cycle, but it may also have
disadvantages common to clonal lineages lacking recombination
(Piercey-Normore, 2005). The inability to undergo sexual
recombination is thought to lead to an accumulation of
deleterious mutations in populations (Muller’s Ratchet), and
the failure to generate new genetic combinations capable of
surviving selective pressures and a changing environment
(Muller, 1964; Maynard-Smith, 1986). If a symbiotic
association is unsuccessful, or if the symbionts encounter a
new selective pressure that they are unable to survive, the
maintenance of this association has a negative effect. The
ability to switch partners could allow lineages such as Lepraria
to colonize a new environment with different light or humidity
regimes, as well as survive new selective pressures. Maintaining
symbiotic associations may provide short-term advantages
and allow rapid exploitation and colonization, but switching
could permit a fine-tuning of the symbiosis, allowing these
lineages to persist in a changing environment and survive over
a longer timescale (as discussed in Buschbom & Mueller, 2006).

The advantages of associating with more than one partner
are known from coral-algal symbioses. Algal symbionts affect

the overall physiology of the coral symbiosis, with some algal
symbionts leading to increased growth rates (Little et al.,
2004). Additionally, algae associated with corals display eco-
logical preferences with respect to depth, and it may be more
advantageous for the same coral to associate with different
algae over an ecological gradient (Rowan & Knowlton, 1995).
Similarly, Yahr et al. (2006) illustrated differences in the
frequencies of associations between fungal and algal lineages
with habitat/environmental variation in the lichen Cladonia
subtenuis.

Switching may also be beneficial for escaping parasites or
conferring resistance to parasites. Many lichen grazers and
parasites are known (including parasites and grazers of
Lepraria (Kümmerling et al., 1993; Etayo & Diederich, 1998;
Cole & Hawksworth, 2001; Czarnota & Kukwa, 2001; Law-
rey & Diederich, 2003; Kukwa & Diederich, 2005; Prinzing,
2005)), and secondary metabolites appear to play a role in
deterring them (Lawrey, 1980; Lawrey & Diederich, 2003;
Benesperi & Tretiach, 2004; Gauslaa, 2004; Nimis & Skert,
2006). From the algal perspective, switching to a new fungal
symbiont may be beneficial if the new symbiont produces
secondary metabolites that prevent or deter grazing or infection
and attack by lichenicolous fungi. It seems natural to ponder
whether lichens with certain photobionts may be more
susceptible or resistant to various parasites and grazers.

The inability to switch partners might be especially hazardous
for clonal organisms. For the reasons discussed above, asexual
lineages are thought to be evolutionary dead-ends (Poelt,
1970; Tehler, 1982) or short-lived over an evolutionary timescale
(Maynard-Smith, 1986). However, cryptic recombination,
previously unknown teleomorphic states and somatic recom-
bination have been discovered in a number of seemingly
asexual taxa (Pontecorvo, 1956; Tinline & MacNeill, 1969;
Burt et al., 1996; Paoletti et al., 2005), and if future work
detects recombination in Lepraria, it would provide another
means by which new associations between fungal and algal
genotypes can be formed. Even if recombination is detected,
one might still expect the frequency with which new fungal–
algal associations are forged to be lower in codispersing sym-
bioses than in symbioses that typically disperse independently.

Conclusions

Lepraria fungi do not produce ascospores or conidia and are
codispersed with their algal symbionts, yet the associations
between Lepraria fungi and Asterochloris algae are not
maintained over evolutionary timescales. Instead, a surprising
amount of dissociation and re-lichenization seems to have
occurred, suggesting that these relationships are unstable and
break down over time. Symbiont-switching may potentially
provide advantages similar to that of recombination, shuffling
fungal and algal relationships, which may possibly help with
the colonization of new habitats and surviving changing
environmental conditions, parasitism and predation.
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